
An evolutionary clustering algorithm based on temporal features
for dynamic recommender systems

Chhavi Rana a,n, Sanjay Kumar Jain b

a Department of Computer Science Engineering, University Institute of Engineering and Technology, MD University, Rohtak, Haryana 124001, India
b Department of Computer Engineering, National Institute of Technology, Kurukshetra, Haryana 136119, India

a r t i c l e i n f o

Article history:
Received 15 September 2012
Received in revised form
9 August 2013
Accepted 20 August 2013
Available online 29 August 2013

Keywords:
Evolutionary
Clustering
Algorithm
Recommender systems
Collaborative filtering
Data mining

a b s t r a c t

The use of internet and Web services is changing the way we use resources and communicate since the
last decade. Although, this usage has made life easier in many respects still the problem of finding
relevant information persists. A naïve user faces the problem of information overload and continuous
flow of new information makes the problem more complex. Furthermore, user′s interests also keeps on
changing with time. Several techniques deal with this problem and data mining is widely used among
them. Recommender Systems (RSs) assist users in finding relevant information on the web and are
mostly based on data mining algorithms. This paper addresses the problem of user requirements
changing over a period of time in seeking information on web and how RSs deal with them. We propose
a Dynamic Recommender system (DRS) based on evolutionary clustering algorithm. This clustering
algorithm makes clusters of similar users and evolves them depicting accurate and relevant user
preferences over time. The proposed approach performs an optimization of conflicting parameters
instead of using the traditional evolutionary algorithms like genetic algorithm. The algorithm has been
empirically tested and compared with standard recommendation algorithms and it shows considerable
improvement in terms of quality of recommendations and computation time.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Recommender systems assist users in navigating through
information on the web by giving suggestions regarding their
preferences. This is done by generating a user profile based on
their past behavior. Although RSs are chiefly applied in the area of
e-commerce, their domain areas are constantly enlarging. One of
the latest examples is their use in the social networking sites
which are widely using recommendations. Different techniques
are used in building RSs and they are mainly divided into three
categories namely collaborative filtering, content based filtering
and hybrid system. Collaborative filtering (CF) works by generating
recommendations on the basis of similarity of interest between
users. The process identifies users that have similar preferences
and then from their ratings of different items it can suggest new
items to a particular user. Content based filtering is the technique
that uses the content knowledge of the domain of recommenda-
tion to predict items that could interest users. The domain knowl-
edge becomes very important in such a scenario that poses as a
hindrance to the overall evolution of the RSs. Hybrid techniques

combines the above two approaches, however, such a system
needs to be designed carefully so that the disadvantages of the
selected system are not inherited.

The most widely used technique for Recommender System is
collaborative filtering [33]. The success of a collaborative filtering
system is highly dependent upon the effectiveness of the algo-
rithm in finding set of users (profile) which are most similar to
that of the current user. Various data mining as well as informa-
tion retrieval technique are applied for this purposed until now.
The adaptability of Recommender System to predict the evolving
user′s needs, which are constantly changing, is a growing area of
research in the sphere of recommender system. In the constantly
changing environment of web, providing relevant content through
a recommendation mechanism can be a difficult task and time
could be one of the most important factors [23,24]. Various model
based algorithms in RSs are well-known to achieve good predic-
tion performances [23]. However, the major drawback for many
such model based methods is that they all require a lengthy
training period. In addition, the static nature of such models
results in a progressive declining of the prediction accuracy after
a period of time because new ratings are not taken into account
until re-computation of whole model, which cannot be done very
often because of the high computational costs. The problem of
matching user profile that evolves with time can be more
effectively handled by an evolving mechanism that uses temporal

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/swevo

Swarm and Evolutionary Computation

2210-6502/$ - see front matter & 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.swevo.2013.08.003

n Corresponding author. Tel.: þ91 9896308747.
E-mail addresses: chhavi1jan@yahoo.com, chhavi.rana@gmail.com (C. Rana),

skj_nith@yahoo.com (S.K. Jain).

Swarm and Evolutionary Computation 14 (2014) 21–30

www.sciencedirect.com/science/journal/22106502
www.elsevier.com/locate/swevo
http://dx.doi.org/10.1016/j.swevo.2013.08.003
http://dx.doi.org/10.1016/j.swevo.2013.08.003
http://dx.doi.org/10.1016/j.swevo.2013.08.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2013.08.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2013.08.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2013.08.003&domain=pdf
mailto:chhavi1jan@yahoo.com
mailto:chhavi.rana@gmail.com
mailto:skj_nith@yahoo.com
http://dx.doi.org/10.1016/j.swevo.2013.08.003

dimension. Such mechanism can precisely fulfill this gap during
profile matching and thus help in dealing with the dynamics of
user profile. Evolutionary clustering based methods adjust the
time problem of the conventional method according to an opti-
mization scheme [19]. Thus, the incorporation of temporal changes
in user preferences can be effectively handled by an evolutionary
clustering mechanism. Moreover, clustering mechanism is proven
to be beneficial for removing the scalability and sparsity problems
in a recommender system [15,33]. Thus, the usage of evolutionary
clustering mechanism in a recommender system can be beneficial
in multiple ways.

1.1. Motivation

The major focus of RSs in the real world setting is to increase
the accuracy of the recommendations. To maintain accuracy of the
system, relevant recommendation needs to be provided to the
user. As time passes, the relevancy of items to the user shifts as his
preferences changes. This shift in the user profile needs to be done
periodically and it requires a constantly evolving mechanism.
Thus, the biggest problem in improving the accuracy of the system
comes with user changing requirements and content up gradation
[23]. To handle the dynamic environment of the web, a RS needs to
continuously upgrade the incoming stream of users, items and
their corresponding choices. The Dynamism in RSs becomes an
important factor that needs to be taken into consideration when
traditional retraining methods cannot keep pace with the rate of
change with respect to user preferences [31]. Maintaining accuracy
together with fulfilling user changing requirements is a difficult
task. The inclusion of time dimension in RSs can help in over-
coming many problems. In addition to predicting changing user
needs and thereby improving accuracy, temporal dimension could
also help in improving the scalability of the system. This is done by
reducing the number of uses and items for similarity calculation
that are divided into clusters using temporal data. The question is
how to add time. As Koren [23], taken a perspective where a
hybrid approach with 67 parameters and lots of calculation proved
time could improve accuracy and won the Netflix prize. Lathia
et al. [24] on the other hand have also shown how changes over a
period of time can affect the accuracy. Although a deep analysis of
temporal dimension in evaluating collaborative filtering is pre-
sented in his research yet the challenge to utilize temporal
dimension for the improvement and diversification of the system
is not addressed. Consequently, very few people have actually tried
to correlate the effect of temporal factor in the recommendation
process. Even less have applied evolutionary computation to the
recommendation process. Chakrabarti et al. [9] gives a very novel
concept of evolutionary clustering. The process of clustering can be
very effective in finding similar users and in turn better clusters
that can improve accuracy in the recommendation process in
addition to handling scalability. To incorporate the idea of evolving
user′s interest with time and the system content, an evolutionary
clustering method could be employed in the recommendation
system. In this paper, we have proposed an evolutionary clustering
based recommendation algorithm that improves the accuracy as
well as computational time.

1.2. Contribution

We propose an evolutionary clustering algorithm that could
serve as the core module for matching user profiles and their
evolving nature in a recommender systems. It is observed that
clustering techniques often lead to worse prediction accuracy even
though it improves scalability [33]. This is because, when cluster-
ing is finished, the size of a cluster that must be analyzed is much
smaller. Consequently, clustering methods can solve the scalability

problem in RSs at the cost of accuracy. We propose an approach
that improves the prediction accuracy as well alleviates the
sparsity and scalability issue with the utilization of temporal
dimension. This is done using evolutionary clustering that utilizes
time dimension to produce updated groups of user in the form of
clusters. In short, the detection of evolving user preferences is
formulated as a clustering problem and a solution based on
evolutionary clustering is proposed. The better the quality of
clusters more will be the recommendation accuracy. Evolutionary
clustering based recommendation algorithm will give better qual-
ity clusters and thereby improve accuracy of prediction for the
users. The evolutionary algorithms that uses genetic algorithm
(GA) as the basis to depict evolution are not referred here as our
proposed approach uses an optimization procedure rather than a
GA based approach. Instead the proposed approach is compared
with other evolutionary clustering approaches and widely used
model based approaches that use various optimization criteria in
the area of RSs application.

The rest of the paper is organized as follows: we present
related work in the area of evolutionary clustering with some
reference to RSs in Section 2. In Section 3, the concept of
evolutionary clustering is presented and our proposed algorithm
is explained. In Section 4, the evolutionary clustering based
recommendation system is presented. In Section 5, the empirical
test results of the proposed algorithm on real life dataset are
presented and its comparison with other standard recommenda-
tion algorithms is discussed. Finally, Section 5 concludes the paper
citing future direction of research in this area.

2. Related work

The most widely used technique for RSs is collaborative
filtering [8]. Collaborative filtering systems are usually categorized
into two types namely memory based and model based methods.
Memory-based methods store the whole rating matrix and predict
recommendations on the calculations between the target user and
item and the rest of the rating matrix. Model-based methods fit a
parameterized model to the given rating matrix and then predict
recommendations on the basis of this model. Furthermore, model
based methods are becoming more popular as with increase in the
number of users and items memory based methods have serious
limitation in terms of computation time and accuracy. Also, there
are some other major advantages in model based technique over
standard memory-based methods namely higher accuracy, con-
stant time prediction, and an explicit and compact model repre-
sentation. The major model based techniques include cluster-
based CF [34,40], Bayesian classifiers [28], regression based meth-
ods [41]. Recent classes of successful CF models are based on low-
rank matrix factorization. The regularized RSVD method [6]
factorizes the rating matrix into a product of two low rank
matrices (user-profile and item-profile) that are used to estimate
the missing entries. An alternative method is Non-negative Matrix
Factorization (NMF) [25] which differs in that it constrain the low
rank matrices forming the factorization to have non-negative
entries. Recent variations are Probabilistic Matrix Factorization
(PMF) [32], and Nonlinear Principal Component Analysis (NPCA)
[42].

The proposed approach in this paper implements a model
based techniques using evolutionary clustering. Evolutionary clus-
tering is a very novel research area which is first postulated by
Chakrabarti et al. [9]. Most of the work in evolutionary clustering
focuses on developing evolving communities and clusters of users
and this paper propose that such clusters could further be related
to user profile and can be used in generating recommendation. To
the best of our knowledge, this approach has so far not being used

C. Rana, S.K. Jain / Swarm and Evolutionary Computation 14 (2014) 21–3022

in the area of RSs research. Our proposed approach is different
from the traditional evolutionary computation approaches, yet we
have also mentioned work from evolutionary computation based
on genetic algorithm and Particle Swarm Optimization approach
to present an overall picture of the research area. Shankar et al.
[35] extended Chakrabarti et al. [9] framework to frequent item
set. They postulated that frequent item set are good candidates for
evolutionary clustering as they naturally satisfy two criterion of
evolutionary clustering. As frequent item set do not change much
there is low history cost as well as there is a smooth transition to a
new cluster. The updating of clusters over time are carried out by
computing snapshot quality using general measure like FScore
[43], NMI [38] whereas history cost is calculated using a score
function. Kim and Han [21] presented a novel particle and density
based evolutionary clustering method for dynamic networks,
which overcome the drawbacks in earlier works of assuming fixed
number of clusters over time [10]. This method consider dynamic
network as a collection of particles called nanocommunities where
each particles contains information about evolution of data and
hence guide to find variable number of communities of arbitrary
forming and dissolving. Further temporally smoothing is applied
through a cost embedding technique. A mapping method based on
information theory carried out the process of evolving, forming
and dissolving clusters, making sequence of local clusters close to
data-inherent quasi l-clique-by-clique.

Tang et al. [39] studied the evolution of a multi-mode network
by analyzing it through temporal information. A multimode net-
work is a combination of number of heterogeneous elements
between which various kinds of interactions are there. They
developed an effective iterative Evolutionary clustering algorithm
to depict the evolving nature of communities. The algorithm
update the cluster indicator matrix iteratively based on the
attributes obtained from the clustering results of related objects
and neighboring timestamps. This algorithm requires complex
computation, which is a major drawback in its application for
large-scale multi-mode network. Further, it requires users to
provide weights for different interaction and temporal information
as well as number of communities, which is a hurdle in the
automatic evolution of the whole process. Lin et al. [27] presented
an innovative algorithm that differs from the traditional methods,
which discover communities by slicing timeframe and then find-
ing their correspondences. This new framework named Facehet
analyzes community evolution by maximizing the fit to observed
data and temporal evolution. This framework extends the self-
clustering algorithm to dynamic network where community
participation is flexible and varied. Moreover, the algorithm also
provides mechanism to determine the number of communities as
well as the handling process of addition and removal of individual
in a dynamic network. Folino and Pizzuti [14] propose a multi-
objective approach named DYN-MOGA to discover community in
dynamic network by employing genetic algorithm. The two
competing objectives of evolutionary clustering snapshot quality
and history cost are optimized using an input parameter that
controls the preference degree of a user with respect to either one
of them. A concept of community score was also introduced to
determine snapshot quality, whereas history cost is calculated
using traditional NMI measure. Das et al. [12] also presents an
automatic clustering model called Multi-Elitist PSO (MEPSO) that
employs a kernel-induced similarity measure instead of the
conventional sum-of-squares distance. It is based on classical
Particle Swarm Optimization (PSO) algorithm and the use of the
kernel function makes it possible to cluster data that is linearly
non-separable in the original input space into homogeneous
groups in a transformed high-dimensional feature space. Senthil-
nath et al. [37] proposes a Firefly Algorithm (FA) for solving
nonlinear optimization problems that overcome local optima

problems based on the behavior of social insects. Earlier hybrid
evolutionary optimization algorithms based on combining evolu-
tionary methods and k-means were used to overcome local optima
problems in clustering.

Another category of evolutionary algorithm implements Dar-
win biological evolution in the context of multiobjective optimiza-
tion. Demir et al. [13] presents graph based sequence clustering
approach that uses multiobjective evolutionary algorithms
(MOEA). They have analyzed various MOEA and determine an
efficient MOEA to cluster sequence data, which could further be
employed in RSs. Fong et al. [15] presented a GA-based approach
to analyses how the input variables can be coded into GA
chromosomes in various modes for supporting combined modes
of collaborative filtering. Silva et al. [36] on the other hand have
proposed a graph based friend recommendation algorithm using
genetic algorithm in a social network setting. They developed an
algorithm that analyses the sub-graph composed by a user and all
the others connected people separately by three degree of separa-
tion. Ko et al. [22] proposed a hybrid techniques for recommenda-
tion that allow the application of machine learning algorithms.
The method generates recommendations based on clustering
users and categorizing items with feature selection through
association word mining by Apriori algorithm. They have used
Genetic algorithm to group users based on items categorized by
Naïve Bayes classifier. The algorithm recommends web documents
to users based on grouped user preference and information of
categorized items.

3. Evolutionary clustering

Cluster analysis is an important research field in Data Mining.
This data mining technique partition a given dataset into clusters
that reflect their natural data structure. Various heuristic or
statistical approaches have been developed for formulation of
such clusters [26]. However, traditional clustering algorithms do
not take into account the existence of temporal dimension and its
influence in the grouping of dataset. This will greatly degrade the
performance of traditional clustering algorithms as far as the
temporal evolution of clusters is concerned and thereby the
concerned applicative areas. This issue motivates us to find more
effective algorithm to conduct the cluster analysis upon temporal
evolution of datasets in the area of recommendation application.
The general objective in any clustering algorithm is to find, among
all partitions of the data set, the best one according to some
quality measure which is usually called an objective function or
cost function. Consequently, finding the partitions of the dataset
that yield the highest values of the objective function is a
challenging optimization problem [2,18]. The traditional clustering
algorithms typically fail to optimize any objective function globally
[7]. We have proposed a cost function that optimizes the objective
function and produce accurate clustering results particularly for
evolutionary datasets. Evolutionary clustering is applied in many
real world problems such as market segmentation, social network
analysis, web mining and bioinformatics. From a user point of
view, evolutionary computation produces relevant results that
depict changes in user′s preferences over a period by producing
clusters that evolves smoothly with time. Thus, Evolutionary
clustering is emerging as an important area of research that could
preserve quality in the fast changing world.

Evolutionary clustering is often considered as an offshoot of
Incremental clustering as well as methods that are used in
clustering data streams. Though both of them are similar in the
sense that they all deal with data that changes with time, but the
difference is well explained by Shankar et al. [35] Data stream
clustering focuses on optimizing time and space constraints while

C. Rana, S.K. Jain / Swarm and Evolutionary Computation 14 (2014) 21–30 23

evolutionary clustering is concerned about temporal smoothness.
Similarly, Incremental clustering does not maintain relevancy to
existing clustering as opposed to evolutionary clustering. It con-
centrates on computational efficiency at the cost of low quality
like DataStream mining. Thus, the two differentiate themselves a
lot from the concepts of evolutionary clustering which focuses on
the quality of clusters. On one hand, a number of evolutionary
algorithms for solving clustering problem have been proposed that
treat clustering as NP hard problem and are based on optimization
of some objective function [20,30,38,40]. On the other hand,
Chakrabarti et al. [9] is taking a completely different outlook. He
implemented evolutionary clustering by building a framework
termed as temporal smoothness that produces updated clusters
from data coming at different time stamps. This method combines
two conflicting objectives called snapshot quality and history cost.
The clustering algorithm should tradeoff the advantage of main-
taining a consistent clustering overtime termed as snapshot
quality with the cost of deviating from an accurate representation
of current data. The preservation of clustering quality is achieved
by not deviating too much from history and the conflicting
objectives are achieved simultaneously through the optimization
of the whole process. As the objects to be clustered evolve over
time, in many real world applications like RSs, a new clustering
result is desired at each time step. In such cases, evolutionary
clustering outperforms traditional clustering methods by produ-
cing clusters that can reflect long-term trends while being robust
to short-term variations. Thus, Evolutionary clustering based
clustering method given by Chakrabarti et al. [9] attempt to
optimize cluster accuracy by maximizing incoming relevant new
data at the current time and minimizing clustering drift from the
historical data. The optimizing of clustering method needs an
input parameter from the user that determines the preference of
user regarding the two competing objectives.

We propose an evolutionary clustering algorithm for dynamic
recommender systems. The algorithm uses the framework pro-
posed by Chakrabarti et al. [9] and attempt to optimize cluster
accuracy by maximizing incoming relevant new data at the
current time and minimizing clustering drift from the historical
data; we name this algorithm EVAR (Evolution VARiance cluster-
ing algorithm). EVAR discovers up to date clusters that are
evolving with respect to time for finding new preferences of users
in recommender systems. EVAR uses a cost function that optimizes
an objective function and produces better clustering results
particularly for evolutionary datasets. The conflicting objectives
named snapshot quality and history cost are maximized and
minimized simultaneously. The snapshot quality is represented
using a new parameter; we call it variance score. The variance
score determines the intra-cluster difference and places different
items into different clusters according to their variance scores. The
lower the variance score, the more will be quality of clusters. We
use a well-known entropy measure called Non-Mutual Informa-
tion (NMI) to determine the history cost [38]. NMI measures the
similarity of two clusters by evaluating the values of the variance
scores, obtained at the current and previous time stamps. EVAR
optimizes the two conflicting objectives and their respective
functions to determine the best possible quality clusters. EVAR
demands an input value from a user to control his/her preference
degree with respect to either snapshot quality or history cost.

3.1. Problem formulation

The field of data mining is a combination of various learning
algorithms. Clustering algorithms is one such category that is
widely used in unsupervised learning. RSs, on the other hand uses
a technique called collaborative filtering which gives recommen-
dation by finding similar users and predicting new user preference

based on their similarity. Clustering algorithms have been very
efficiently applied in the process of collaborative filtering to find
similar users by developing clusters of similar users or items for
prediction. However, with changing user′s requirement, a new
mechanism is required to give accurate recommendations. For
implementing such recommendation system, a new method EVAR
is proposed here. EVAR uses a framework of Evolutionary cluster-
ing introduced by Chakrabarti et al. [9], which clusters data over a
period of time. At each time stamp, a new cluster is produced by
optimizing two competing parameter named snapshot quality and
history cost. Snapshot quality refers to the quality of clusters
formed and how accurately they depict data at the current time
while history cost implies that the new cluster should not differ
dramatically from the earlier one. This framework in fact focuses
on smooth transition of clusters, which evolves over time by
maximizing snapshot quality and minimizing history cost. The
total quality of the sequence is defined as follows:

∑
T

t ¼ 1
SqðCtMtÞ – ∑

T

t ¼ 2
C p HcðC t�1 ;CtÞ ð1Þ

where

Sq(CtMt) return snapshot quality of cluster Ct at time t w.r.t
input m.
Hc(Ct�1,Ct) return history cost of cluster Ct at time t w.r.t time
t�1.
Cp denotes the parameter for adjustment of the two objectives.

Let U¼{1, 2, 3…, n} is the universe of objects to be clustered.
At each timestamp t where 1rtrT, a new set of data arrives
to be clustered. We assume that this data can be represented as an
n�m matrix Mt that expresses the relationship between each
pair of data objects. The relationship expressed by Mt is based on
similarity or based on rating given by a user at timestamp
t depending on the requirements of the particular underlying
algorithm. We define Evolutionary Clusters as a group of items
at a given time stamp t. Let T¼{1,2,3…,t} be a finite set of time
stamps and I¼{i1,i2…, itm} be a set of m items and U¼ {u1,u2,….
utn} be n users arrived at different time stamps. Let C¼(C1,
C2, Ct) be set of clusters at different timestamps. Let C1 be the
cluster at timestamp T1. When a new item it is added at timestamp
t or an old item changes its preference level and variance score,
the EVAR produces a new clustering Ct, which optimizes the
quality of clusters. A cluster group Ct where Ct¼{Ct1,Ct2,Ct3…Ctk}
(k depicts the number of cluster items) is a group of items at any
given time and the partitioning of items is such that each group
gives the maximum similarity and minimum variance. This is
achieved by clustering algorithm through defining their cost
function depicting the quality of clusters. This algorithm takes
input M1,… Mt at each timestamp and produces clusters C1,…,Ct
for the corresponding timestamp t based on the new matrix and
history so far.

Different functions are further proposed by different research-
ers to determine the cost function. The major contribution of out
proposed approach is the formation of a cost function that
optimizes the two conflicting parameter specifically for determin-
ing change in user interests over a period of time. The cost
function is defined as a combination of snapshot cost and history
cost in the temporal smoothness framework given by Chakrabarti
et al. [9] and further adopted by [14,21,35]. This cost function can
tradeoff between history cost and snapshot quality and is defined
as follows:

CF ¼ α� Sqþð1�αÞ � Hc ð2Þ
where α is a parameter taken from the user to prioritize one of the
two objectives. When α¼1, the function returns clustering results

C. Rana, S.K. Jain / Swarm and Evolutionary Computation 14 (2014) 21–3024

without temporal smoothing. When α¼0, however, clustering
result produced are similar to previous one. For testing purposes
the value of α is taken as .5 to remove the bias towards any
particular function in the total quality of the clusters.

The above defined cost function is optimized using two
competitive objectives the snapshot quality Sq and History cost
Hc. As snapshot quality measures how well the clusters represents
the data at time t, we have defined this measure using a score
called variance score, which minimizes difference within the items
in a cluster and maximizes the similarity. The implementation of
variance introduced in [1,11] has proved very effective in deter-
mining snapshot quality [10,17]. Variance score is the difference
between the ratings of items in a particular cluster at a given point
of time. Greater the value of the variance score, lower will be
snapshot quality. We choose the timestamp t whose contribution
to this expression is maximal.

SqðCtMtÞ ¼ ∑
T

t ¼ 1
ð1�VScoreðMt ; tÞ ð3Þ

where

Sq is the snapshot quality.
VScore is the variance score at time t w.r.t Mt.

VScoreðMt ; tÞ ¼ ∑
T

t ¼ 1

∑u′ϵKðuÞðRðu′; iÞ�RAðiÞÞ2
K

ð4Þ

where

VScore denotes variance of K neighbor rating for item I in
matrix Mt at timestamp t.
K (u) denotes k neighbors of user u who rated item I and has
the highest similarity sim (u, u′).
to user u at time stamp t.
R(u′, i) denotes the rating of user u′ on item i.
RA(i) denotes the average rating of all K neighbors on item i.

The history cost is defined using traditional entropy measures
NMI [2].The normalized mutual information, NMI (A, B) is defined
as:

NMIðt; t�1Þ ¼ �2
∑Ct

i ¼ 1∑
Ct�1
¼ j ¼ 1C ij log ðC ij N=C i C j Þ

∑Ct
i ¼ 1C i log ðCi=NÞþ∑Ct�1

j ¼ 1C j log ðCj=NÞ
ð5Þ

where Ct (Ct�1) is the number of groups in the partitioning t (t�1),
Ci. (Cj) is the sum of the elements of C in row i (column j), and N is
the number of nodes. If t¼t-1, NMI (t, t�1)¼1. If cluster at
timestamp t and t�1 are completely different, NMI (t, t�1)¼0.
Thus, our second objective at a generic time step t is to maximize
NMI (Ct, Ct�1).

4. Evolutionary clustering based recommendation model

We now formulate the recommendation modeling problem in
terms of predicting the unknown ratings using a matrix repre-
sentation by transforming it into a weighted matrix approximation
problem and using the evolutionary clustering based approach for
solving it. Let U¼{u}u¼ i

n be the set of n users and I¼{i}i¼1
m_ be

the set of m items. Let A¼n�m be the ratings matrix such that aij
is the rating of the user ui for the item ij.

There are the two phases of our recommendation model based
on evolutionary clustering:

(i) Neighborhood computation, which involves clustering the
ratings matrix and computing the neighbor of a particular
user or item which, could be later used for prediction,

(ii) Prediction, which consists of estimating an unknown rating
from the neighborhood calculated above.

4.1. Neighborhood computation

The main objective of this component is to compute all the
parameters that are required for fast prediction of the unknown
rating. In our evolutionary clustering based approach, this essen-
tially involves calculating clusters of users and items. First, we
select the number of user-clusters k, considering the effect on the
recommendation accuracy and resource requirements. Afterwards,
we perform evolutionary clustering on the user-preference data.
A model is then built with k surrogate users, directly derived from
the k centroids: {c1, c2,…, ck}, where each ci is a vector of size m,
the number of items. That is, ci¼(Rci,a1, Rci,a2,…, Rci,am), where Rci,aj
is the element in the centroid vector ci corresponding to the item
aj. Further, since Rci,aj is essentially an average value, it is 0 if
nobody in the i-th cluster has rated aj. Lastly, we perform
similarity computations in order to choose neighborhood for a
particular user through Pearson correlation coefficient [32].

4.2. Prediction

In order to compute the rating prediction Rut,at for the target
(user, item) pair (ut, at), the following steps are taken. Firstly, we
take the similarity computation values of the target user with each
of the surrogate model users who have rated at using the Pearson
correlation coefficient given below and we find up to l surrogate
users most similar to the target user:

Sut ;ci ¼
∑aϵiðRu t; a

�RAut ÞðRc i; a
�RAc i

Þffi
∑aϵiðRu t; a

�RAut Þ2∑aϵiðRci; a�RAci Þ2
r ð6Þ

where I is the set of items rated by both the target user and i-th
surrogate user.

(1) Rut,a is the rating prediction of user item pair (ut,at).
(2) RAut the average rating of user time pair ut.
(3) Rci;a is the rating prediction of user item pair (ci,at).
(4) RAc i

is the average rating of user item pair Ci.

Secondly. we compute prediction using the adjusted weighted
average:

Ru t; at
¼ RAut þ

∑k
i ¼ 1ðRci ;at�RAciÞS ut; ci :f

α
ui ðtÞ

∑l
i ¼ 1Sut;ci:f

α
ui ðtÞ

ð7Þ

where Rci ;at is the rating prediction of user item pair (ci,at).

RAci is the average rating of user item pair Ci.
Sut;ci is the value calculated in the first step.
K is the number of neighbors (clusters).

f αui ðtÞ ¼ ∑e�αðt�tui∑RAut ð8Þ

4.3. Evolution of the clusters

The evolutionary approach proposed in this paper is required to
work in dynamic settings where ratings are being continuously
updated. The traditional clustering algorithms, though quite effi-
cient, are primarily intended for a static setting where the users,
items and the ratings are fixed. This exclusion of new ratings
in formulating clusters in traditional algorithms could result in
poor performance. This problem is tackled by considering an
incremental updation mechanism. As we know, the prediction of

C. Rana, S.K. Jain / Swarm and Evolutionary Computation 14 (2014) 21–30 25

the ratings are done using the matrix values termed as summary
statistics, updating these statistics using the new ratings will
include the most recent information. Three cases emerge when
we include new rating. In the first case, the new rating corre-
sponds to an existing user and item, and here we update the
corresponding averages. In the second case, when either the user
or item is new, then there is no cluster assignment for this new
entity. This new user is then assigned to an intermediary tempor-
ary cluster and their corresponding averages are updated. During
the next run of the evolutionary clustering algorithm, the users in
the temporary user cluster and the items in the temporary item
cluster are reassigned to one of regular user and item clusters.

The following pseudo code illustrates the implemented EVAR
clustering algorithm:

Algorithm 1. Clusters the user-item rating matrix Mt with t
timestamps into k clusters,

1. procedure EVAR(Mt, k,T)
2. for t←0
3. repeat
4. t←tþ1
5 Choose the initial centroid c1 to be m1.
6. Choose the next centroid ci by selecting ci¼mt′€Mt

which maximizes cost function CF (explained in section
above):
∑T

t ¼ 1SqðCtMtÞ –∑T
t ¼ 2C p HcðC t�1 ;CtÞ

7. until (t¼T) and k centroids are found
8. end for
9. return { c1, c2, … ck } i.e k centroids
10. end procedure

Algorithm 2. Predict user rating for an using evolutionary cluster-
ing for calculating similar users,

1. procedure EVARCF(U, I, Mt, k, T)
2. Mt←empty
3. For each node € M
4. N←neighborhood(EVAR,M, I,NR)
5 For each (i, s)€N
6. For each rui € ir
7. next(RMnode,u) € rui
8. For each u€U
9. Pu ←empty
10. For each i€I
11. If rui ¢ ur Then
12. EVAR←find-EVAR(M, K, t)
13. N←empty
14. For each n€U
15. next(N)←similarity(RMEVAR,u,RMEVAR,n) (Eq. (6))
16. sort(N) in descending order of similarity
17. p←predict(u, i,N) (Eq. (7))
18. next(Pu)←(i, p)
19. Return P

5. Experiments

This paper tries to understand the process of changes in user
preferences and detecting those changes using an evolutionary
clustering mechanism in a recommendation model using Matlab
toolbox. In particular, we look at the performance of our approach
with benchmark system using clustering mechanism on predicting

user ratings on MovieLens dataset. By doing so, pros and cons of
evolutionary clustering mechanism is investigated to give a full
understanding of the advantage of this approach in the area of RSs.

5.1. Dataset

In this experiment, we present a comparative study of cluster-
ing technique of data mining with other standard techniques on
various parameters using Movielens dataset (www.movielens.
umn.edu). MovieLens data sets were collected by the GroupLens
Research Project at the University of Minnesota and MovieLens is a
web-based research RSs that was released in 1997. This website is
visited by hundreds of users each week to rate and receive
recommendations for movies [33]. The website has released a
number of datasets from time to time. We have chosen specifically
the 100 K MovieLens Dataset since it is quite big is size for
scalability testing and also it contains timestamps for temporal
experimentation. The data set used contained 100,000 time
stamped ratings, with a scale of one to five, from 943 users and
1,682 movies, with each user rating at least 20 items. By taking an
average of the whole dataset, each user has rated 151 movies, out
of these 87 were judged to be relevant. The average score for a
movie was 3.58.

5.2. Methodology and metrics

5.2.1. Benchmark CF system
To compare the performance of our clustering algorithm, we

also entered the training ratings set into eight other benchmark
recommendation engine that includes clustering based
approaches as well as standard model based approaches that gives
good accuracy. Thus, we have done empirical comparison of our
approach with some other clustering methods like regularized
RSVD [29], COCL [16], and ECOCL [20] as well as standard model
based algorithms like MA[3,4], NNMF [25], PMF [32] and NPCA
[40].

5.2.2. Experimental platform
The effectiveness of our clustering algorithm is tested over real

life data and the performance is compared with other clustering
algorithms. The evolutionary clustering code used here has been
implemented in Matlab toolbox. The tests were run on a Pentium
4 2.80 GHz computer with 512 M RAM. Tests were run on Matlab
Version 7.01 on Microsoft Windows XP Professional.

5.2.3. Experimental steps
The effectiveness of our proposed clustering approach is

evaluated empirically using Movielens dataset. For this, the
dataset is divided into ten 80–20% random train-test splits for
evaluating the prediction accuracy and then the results are
averaged over the various splits. This is done for performing
Ten-fold cross validation in which the final results are averaged
on these ten sets. For the purpose of comparison, we perform the
same experiments using other benchmark recommender models.
We use the same train/test ratio x, and number of neighbors.
We obtained rating predictions for each sample according to
the specific recommendation model. We evaluated the results
using the MAE metric and also noted the run time elapsed in
milliseconds.

5.3. Results

In this section, the results of experiments performed to
evaluate the effectiveness of our proposed clustering approach
are presented. As discussed earlier, we have used the Movielens

C. Rana, S.K. Jain / Swarm and Evolutionary Computation 14 (2014) 21–3026

www.movielens.umn.edu
www.movielens.umn.edu

dataset1 consisting of 100,000 ratings (1–5) by 943 users on 1682
movies. We used mean absolute error (MAE, RMSE and runtime)
to evaluate and compare different methods. Six methods were
used for comparison excluding the proposed method:

(1) RSVD: Singular value decomposition.
(2) COCL: Co-clustering.
(3) ECOCL: Evolutionary co-clustering
(4) EVAR: Proposed approach.
(5) MA: Memetic algorithm.
(6) NNMF: Non-negative matrix factorization.
(7) PMF: Bayesian probabilistic matrix factorization.
(8) NPCA: Nonlinear Principal Component Analysis.

The experiments compared our time based evolutionary clus-
tering based algorithm with other standard benchmark recom-
mendation algorithms in terms of both run time and prediction
accuracy to show the tradeoff between efficiency and effective-
ness. In order to show the generality of approach, we tend to
compare the proposed approach with other model based algo-
rithms as well as some clustering based recommendation algo-
rithms. The performance comparisons for rating prediction for all
the algorithms are summarized in Table 1. Clearly, from Table 1, it
can be inferred that all algorithms performs better than COCL [16]
in terms of prediction time as well as accuracy. The mean absolute
error values of all the other algorithms are rather comparable at
t¼1, but with the t¼10, there a comparable improvement in the
accuracy of the proposed algorithm as rest of the model based
algorithms [3,25,32,42] do not recomputed values with the incom-
ing new data due to high computational costs. Moreover our
proposed approach requires fewer parameter and less training
time compared to rest of the algorithms. This contradicts with the
result in [30,34], where the prediction quality is worse in case of
the clustering algorithms. The reason is that previous clustering
approaches group [16,20] users using only rating data and often
result in less personal and worse accuracy than classical CF
algorithms. Here we cluster users based on their recent temporal
rating (the variance score), so using additional information for
clustering has the benefit. Therefore, our proposed evolutionary
clustering based RSs could resolve the very large scale dataset
problem with high prediction quality and less computation time.
The proposed evolutionary clustering approach is similar to the
other clustering-based techniques in the sense that neighborhoods
are employed for prediction, the main difference being that the
clusters are generated on the basis of temporal dimension so that
user/item synonymy ceases to be a problem. In addition, the
evolutionary clustering algorithm also optimizes the variance of
a user rating by reconstruction of the ratings matrix like RSVD and
NNMF. However, unlike RSVD and NNMF, the effects of these
changes in the ratings matrix are restricted to a particular row/
colomn which makes it possible to have incremental updates
efficiently.

Furthermore, we can see that the models RSVD and NNMF can
indeed outperform our EVAR method given that they were updated
at every time step (i.e. td¼1) although their run time at such update
frequency were almost 15 times longer than the most of the other
method. Also, MA [3,4] based GA recommender are also unsuitable in
such an environment as they tend to take large training time as
incrementally creating such genetic material (by means of mutation
operators and crossover) take a lot of time and make the use of
genetic algorithms mostly impractical for on-line recommender
systems. This is an issue which is less addressed in the GA-based
text filtering literature. The two incremental algorithms RSVD and
NNMF use a simple strategy to incrementally maintain their model at
each time step given new ratings. They use the parameters in the
most recent model to initialize the training of the next model. There
is very little change in parameters in frequent updates, so we use a
parameter td that controls how frequently the model is updated or
retrained. Moreover, we can see that if the rate of updation of RSVD,
NNMF and other model based methods like NNMF is reduced i.e. td is
increased; their performance tends to decline drastically and became
much worse than our proposed approach EVAR while they still took
much longer run time than the EVAR. This empirically proved that
although the EVAR method yielded suboptimal prediction quality, it
was nonetheless the most efficient method, which was nearly giving
good prediction quality to a certain extent as well as it is faster than
the more complicated models. The applications areas that generate
user feedback data at a very high speed, it is very difficult to update
complicated models such as RSVD and NNMF frequently to achieve
optimal prediction accuracy. But as we have seen, the EVAR model
would be ideal in terms of both efficiency and effectiveness in such
cases. Finally, although most of these algorithms have comparable
accuracy in a stable environment yet computation time for EVAR is
much lower. In addition, when the models are periodically updated
the accuracy of EVAR algorithms tends to be higher as well.

We now present few other experimental results showing how
various parameters affect the prediction accuracy and the average
prediction time of various algorithms.

5.3.1. Prediction accuracy vs. choice of CF-algorithm
The MAE (mean absolute error) values obtained using the

different algorithms is shown in Fig. 1. It can be noted from the
table that although the prediction accuracy of NNMF, MA and
RSVD is higher than other clustering based as well as model based
approaches yet this difference tends to subsidies when the rate of
updation of RSVD, MA and NNMF is reduced. Infact, their perfor-
mance tends to decline considerably and became much worse
than our proposed approach EVAR while they still took much
longer run time than the EVAR. Therefore, the deciding factor in
favor of the evolutionary clustering approach for giving better

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

RSVD COCL ECOCL EVAR NNMF PMF NPCA MA

MAE (t=1) MAE (t=10)

Fig. 1. Prediction accuracy vs. Choice of CF-algorithm.

Table 1
Results.

Algorithm Training time
(milliseconds per rating)

MAE (t¼1) MAE (t¼10)

RSVD 27.05 0.6970 0.7311
COCL 3.45 0.7781 0.7513
ECOCL 2.27 0.7626 0.7336
EVAR 1.88 0.7215 0.7239
MA 28.30 0.8254 0.8869
NNMF 3.07 0.7299 0.7467
PMF 12.08 0.7626 0.7826
NPCA 11.18 0.7776 0.7857

C. Rana, S.K. Jain / Swarm and Evolutionary Computation 14 (2014) 21–30 27

performance is that it required fewer calculations and less training
time compared to all the other methods while giving optimal
prediction accuracy.

5.3.2. Prediction time vs. choice of CF-algorithm
The average prediction time for the various recommendation

algorithms on the 100 K MovieLens Dataset is shown in Fig. 2. The
prediction time is reasonably low in case of evolutionary clustering
based approach in comparison with RSVD, MA and PMF methods,
although it is comparable with ECOCL,COCL and NNMF methods.

5.3.3. Sensitivity of different training-test ratio x
To determine the sensitivity of density of the dataset we carried

out an experiment where we varied the value of x from 0.2 to
0.8 in an increment of 0.2. For each of these training-test ratio
values we ran our experiments using our proposed algorithm and
the other recommendation algorithms. The results are shown in
fig. 3. We observe that the quality of prediction increase as we
increase x and our proposed CF is better than the traditional
methods as depicted by the decreased values of MAE with an
increase in training size. The RSVD approach shows better results
for low values of x but as we increases the value of x, the quality
tends to decrease. This is because of the high computational
costs associated with such models that restrict their matrix
reconstruction.

5.3.4. Sensitivity of no. of neighbor/no. of clusters
We compare the proposed evolutionary clustering method

with the other traditional methods w.r.t to no. of neighbors. The

size of the neighborhood has a significant effect on the prediction
quality. In our experiments, we vary the number of neighbors and
compute the MAE. The MA approach shows better results for
certain values of K but as we increase or decrease the value of k,
the quality tends to decrease. The obvious conclusion from Fig. 4,
is that MAE tends decrease with the increasing value of no. of
neighbors and the values becomes stable after a while. Thus, an
optimum no. of neighbors must be selected to and in this case it
is 30.

Our experiments suggest that clustering based neighborhood
provides comparable prediction quality as other widely known
model based recommendation approach. However, at the same
time they tend to significantly improve the online run time
performance. This demonstrated the effectiveness of clustering
algorithm w.r.t those real life application that require periodic
updation In short, most of these recommendation algorithms have
comparable accuracy in a stable environment yet computation
time for EVAR is much lower. In addition, when the models are
periodically updated the accuracy of EVAR algorithm tends to be
higher as well. Most of the model based algorithms requires
continuous updation to maintain accuracy which is infeasible as
it requires very high computation cost. Thus, EVAR tends to
produce good accuracy, high scalability and less computation time
while updating clusters periodically.

In future, improved clustering algorithms based on temporal
dimension as well as enhanced prediction generation schemes can
be used to improve the prediction quality further. Clustering
techniques should be ideally used as the first step for reducing
the candidate set for calculating similar users or for performing
neighborhood computation across several recommender engines.
While dividing the data into clusters may hurt the accuracy or
recommendations to users near the periphery of their assigned
cluster, time based clustering methods may bridge the valuable
gap between accuracy and throughput.

The dataset MovieLens, has high rating variance among its
users and therefore, it is hard to establish statistical significance
for behavioral differences among its users. The variance of user
rating ranges from some rating couple of movies while others rate
hundreds; some logging in once every day while others once per
week. Thus, we have chosen some interesting cases i.e users that
rated a large number of items over a period of time and the
algorithms are tested per user case for such users. For the
experiments, we have chosen randomly 10% out of all customers
in the dataset as the test customers. For each test customer, we
have chosen randomly ten movies that are actually rated by the
test customer as the test movies. The final experimental results are
averaged over the results of ten different test sets for a statistical
significance. We have then computed statistical significance of
differences between pairs of algorithms using the Wilcoxon Signed

0

5

10

15

20

25

30

35

RSVD COCL ECOCL EVAR NNMF PMF NPCA MA

Training Time(milliseconds per rating)

Fig. 2. Prediction time vs. Choice of CF-algorithm.

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

MAE (x=.2) MAE (x=.4) MAE (x=.6) MAE (x=.8)

M
A

E

RSVD

COCL

ECOCL

NNMF

EVAR

PMF

NPCA

MA

Fig. 3. Sensitivity of different training-test ratio x.

Fig. 4. Sensitivity of no. of neighbor/no. of clusters.

C. Rana, S.K. Jain / Swarm and Evolutionary Computation 14 (2014) 21–3028

Rank Test [5] with 95% confidence to establish confidence in the
analysis of result. This is done in order to test if one algorithm
consistently obtains higher metric values than the other. More-
over, we have also calculated standard deviation for our proposed
algorithm and the experimental results indicate that it is compar-
able to the other algorithms in terms of function evaluations and
standard deviations. Finally, as we have used only one particular
dataset, we must state that in any case that these results are not
conclusive. As different data splits used for testing shows varia-
bility on the results, therefore further research using additional
datasets is needed so as to reach to more robust conclusions. In
future we intend to evaluate different approach of generating
different time-evolving training sets more deeply, so as to present
more vivid explanations.

However, in real applications, we can only consider opinions of a
few items in dataset due to the scalability problem, and since our
approach yield significantly more accurate prediction than traditional
approach when number of items is significantly large, our approach
can efficiently contribute to the improvement in the accuracy of
rating prediction in real applications. In addition to these dataset, we
intend to test the proposed approach with other real life datasets,
such as Netflix (dataset available at netflixprize.com) and Yahoo!
Movies (ratings publicly displayed at movies.yahoo.com). Currently,
though the proposed technique is efficient in terms of accuracy, it
shows some restrain in terms of scalability. We hope to present more
results of our experiment in the nearest future.

6. Conclusion

An evolutionary algorithm is used to explore the evolving
process of any system in general. These methods can be applied
in collaborative filtering RSs to incorporate new data over a period
of time and update user profile with its current requirements.
However, this problem has not been adequately addressed. This
paper examined the effectiveness of evolutionary clustering algo-
rithm for generating quality clusters and predicting recommenda-
tions based on real life datasets. The evolving clusters are used for
depicting user preferences and building an adaptive recommender
system. The algorithm uses a score called variance score to
calculate the difference of user rating thereby calculating their
change in the evolutionary process at each timestamp. Thus, the
algorithm provides a cluster, which is refined at each timestamp
by two competing score.

Experimental results on large real world data sets demon-
strated that our algorithm can provide high quality predictions at a
much lower computational cost compared to traditional clustering
algorithms and other model based approaches in repeatedly
building models. The biggest disadvantage of model based (com-
paratively slow training) could be improved significantly. Our
experimental results on several real life datasets show that this
scalability does not come at the cost of quality. The proposed
approach is content agnostic and thus can be easily extendible to
other domains as well. Our method provides RSs that gives
accurate results and updates incrementally without spending time
on tuning. In the future, we would consider more complex models
involving evolutionary clustering based matrix factorization for
implementing the temporal dynamics of user feedbacks. Also,
further work involves evaluating the algorithm on different
datasets to analyze the efficacy with respect to other domains.
The computational efficiency and memory requirement also needs
to be studied in detail with adjustment of algorithm parameters
such as Cp. The algorithm could also be adjusted for solving many
other Information retrieval problem as well as data mining
problems.

References

[1] Adomavicius, G., Kwon, Y., 2008. Overcoming accuracy-diversity tradeoff in
recommender systems: a variance-based approach. In: Proceedings of 18th
Workshop on Information Technology and Systems WITS, Paris, France.

[2] X. Amatriain, A. Jaimes, N. Oliver, J.M. Pujol, Data mining methods for
recommender systems, Recommender Systems Handbook (2011) 39–71.

[3] Banati, H., Shikha, M., 2010. Memetic collaborative filtering based recommen-
der system, Second Vaagdevi International Conference on Information Tech-
nology for Real World Problems (VCON), pp. 102–107.

[4] H. Banati, S. Mehta, A Multi-perspective evaluation of MA and GA for
collaborative filtering recommender system, International Journal of Compu-
ter Science & Information Technology (IJCSIT) 2 (5) (2010) 103–122, http://dx.
doi.org/10.5121/ijcsit.2010.2508.

[5] D.F. Bauer, Constructing Confidence Sets using Rank Statistics, Journal of the
American Statistical Association 67 (339) (1972) 687–690.

[6] Billsus, D., Pazzani, M.J. 1998. Learning collaborative information filters. In:
Proceedings of the Fifteenth International Conference on Machine Learning,
pp. 46–54.

[7] J.G. Booth, G. Casella, J.P. Hobert, Clustering using objective functions and
stochastic search, Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 70 (2008) 119–139.

[8] Candillier, L., Meyer, F., Boull, M, 2007. Comparing state-of-the-art collabora-
tive filtering systems, In: Proceedings of the 5th international conference on
Machine Learning and Data Mining in Pattern Recognition (MLDM '07), Petra
Perner (Ed.), Springer-Verlag, Berlin, Heidelberg, pp 548–562.

[9] Chakrabarti, D., Kumar, R., Tomkins A., 2006. Evolutionary clustering, In:
Proceedings of the 12th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining KDD 06, pp. 554–661.

[10] Chi, Y., Song, X., Zhou, D., Hino, K., Tseng, B.L. 2007. Evolutionary spectral
clustering by incorporating temporal smoothness. In: Proceedings of Knowl-
edge Discovery and Data Mining(KDD '07), pp. 153–162.

[11] S. Das, A. Abraham, A. Konar, Automatic clustering using an improved
differential evolution algorithm, IEEE Transactions on Systems Man and
Cybernetics Part A Systems and Humans 38 (1) (2008) 218–237.

[12] S. Das, A. Abraham, A. Konar, Automatic kernel clustering with a Multi-Elitist
Particle Swarm Optimization Algorithm, Pattern Recognition Letters 29 (5)
(2008) 688–699.

[13] Demir, G.N., Uyar, A.S., Oguducu, S., 2007. Graph-based sequence clustering
through multiobjective evolutionary algorithms for web Recommender Sys-
tems. In: Proceedings of 9th annual Conference on genetic and evolutionary
computation, pp. 1943–1950.

[14] Folino, F., Pizzuti, C., 2010. Multiobjective evolutionary community detection
for dynamic networks. In: Proceedings of the 12th Annual Conference on
Genetic and Evolutionary Computation GECCO2010, pp. 535–536.

[15] Fong, S. Ho, Y., Hang, Y., 2008. Using genetic algorithm for hybrid modes of
collaborative filtering in online recommenders. In: Proceedings of the 2008
8th International Conference on Hybrid Intelligent Systems (HIS '08), IEEE
Computer Society, Washington, DC, USA, pp 174–179.

[16] George, T., Merugu, S., 2005. A scalable collaborative filtering framework based
on co-clustering. In: Proceedings of the IEEE International Conference on Data
Mining, pp. 625–628.

[17] J. Handl, J. Knowles, An evolutionary approach to multiobjective clustering,
IEEE Transactions on Evolutionary Computation 11 (1) (2007) 56–76.

[18] A. Hatamlou, S. Abdullah, H. Nezamabadi-pour, A combined approach for
clustering based on K-means and gravitational search algorithms, Swarm and
Evolutionary Computation 6 (2012) 47–52.

[19] E.R. Hruschka, R.J.G.B. Campello, A.A. Freitas, A.C.P.L.F. De Carvalho, A survey of
evolutionary algorithms for clustering, IEEE Transactions on Systems Man and
Cybernetics Part C Applications and Reviews 39 (2) (2009) 133–155.

[20] Khoshneshin, M., Nick Street, W., 2010. Incremental collaborative filtering via
evolutionary co-clustering. In: Proceedings of the Fourth ACM Conference on
Recommender Systems (RecSys '10), ACM, New York, NY, USA, pp. 325–328.

[21] M.S. Kim, J. Han, A particle-and-density based evolutionary clustering method
for dynamic networks, VLDB 2 (1) (2009) 622–633.

[22] Ko, S.J., Lee, J.H., 2001. Discovery of user preference through genetic algorithm
and Bayesian categorization for recommendation, Conceptual Modeling for
New Information Systems Technologies, ER 2001 Workshops, LNCS vol. 2465,
Springer-Verlag, pp. 471–484.

[23] Koren, Y., 2009. Collaborative filtering with temporal dynamics. In: Proceed-
ings of the 15th ACM Interna tional Conference on Knowledge Discovery and
Data Mining, 2009, pp. 447–456.

[24] Lathia, N., Hailes, S., Capra, L. 2009. Temporal collaborative filtering with
adaptive neighbourhoods. In: Proceedings of the 32nd International ACM
SIGIR Conference on Research and Development in Information Retrieval
SIGIR, Boston, Massachusetts, pp. 796–797.

[25] D.D. Lee, H.S. Seung, Algorithms for non-negative matrix factorization, in: T.
K. Leen, T.G. Dietterich, V. Tresp (Eds.), Lecture Notes in Computer Science,
4029, 2006, pp. 548–562.

[26] Li, T., Anand, S.S., 2008. HIREL: An Incremental Clustering Algorithm for
Relational Datasets, ICDM, pp. 887–892.

[27] Lin, Y.R., Chi, Y., Zhu, S., Sundaram, H., B. Tseng, L., 2008. FacetNet: A
framework for analyzing communities and their evolutions in dynamic net-
works. In: Proceedings of 17th International Conference on World Wide Web
2008, pp. 685–694.

C. Rana, S.K. Jain / Swarm and Evolutionary Computation 14 (2014) 21–30 29

http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0005
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0005
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0005
http://refhub.elsevier.com/S2210-6502(13)00052-7/sbref1
http://refhub.elsevier.com/S2210-6502(13)00052-7/sbref1
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0010
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0010
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0010
http://dx.doi.org/10.5121/ijcsit.2010.2508
http://dx.doi.org/10.5121/ijcsit.2010.2508
http://dx.doi.org/10.5121/ijcsit.2010.2508
http://dx.doi.org/10.5121/ijcsit.2010.2508
http://refhub.elsevier.com/S2210-6502(13)00052-7/sbref3
http://refhub.elsevier.com/S2210-6502(13)00052-7/sbref3
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0015
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0015
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0015
http://refhub.elsevier.com/S2210-6502(13)00052-7/sbref4
http://refhub.elsevier.com/S2210-6502(13)00052-7/sbref4
http://refhub.elsevier.com/S2210-6502(13)00052-7/sbref4
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0020
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0020
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0020
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0020
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0025
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0025
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0025
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0030
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0030
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0030
http://refhub.elsevier.com/S2210-6502(13)00052-7/sbref5
http://refhub.elsevier.com/S2210-6502(13)00052-7/sbref5
http://refhub.elsevier.com/S2210-6502(13)00052-7/sbref5
http://refhub.elsevier.com/S2210-6502(13)00052-7/sbref6
http://refhub.elsevier.com/S2210-6502(13)00052-7/sbref6
http://refhub.elsevier.com/S2210-6502(13)00052-7/sbref6
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0035
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0035
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0035
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0035
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0040
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0040
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0040
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0045
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0045
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0045
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0045
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0050
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0050
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0050
http://refhub.elsevier.com/S2210-6502(13)00052-7/sbref7
http://refhub.elsevier.com/S2210-6502(13)00052-7/sbref7
http://refhub.elsevier.com/S2210-6502(13)00052-7/sbref8
http://refhub.elsevier.com/S2210-6502(13)00052-7/sbref8
http://refhub.elsevier.com/S2210-6502(13)00052-7/sbref8
http://refhub.elsevier.com/S2210-6502(13)00052-7/sbref9
http://refhub.elsevier.com/S2210-6502(13)00052-7/sbref9
http://refhub.elsevier.com/S2210-6502(13)00052-7/sbref9
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0055
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0055
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0055
http://refhub.elsevier.com/S2210-6502(13)00052-7/sbref10
http://refhub.elsevier.com/S2210-6502(13)00052-7/sbref10
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0060
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0060
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0060
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0060
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0065
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0065
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0065
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0070
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0070
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0070
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0070
http://refhub.elsevier.com/S2210-6502(13)00052-7/sbref11
http://refhub.elsevier.com/S2210-6502(13)00052-7/sbref11
http://refhub.elsevier.com/S2210-6502(13)00052-7/sbref11
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0075
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0075
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0080
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0080
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0080
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0080

[28] Miyahara, K., Pazzani, M.J., 2000. Collaborative filtering with the simple
bayesian classifier. In: Proceedings of the 6th Pacific Rim International
Conference on Artificial Intelligence, pp. 679–689.

[29] Paterek, A., 2007. Improving regularized singular value decomposition colla-
borative filtering, In: Proceedings of KDD Cup and Workshop, pp. 39–42.

[30] Papagelis, M., Rousidis, I., Plexousakis, D., Theoharopoulos. E., 2005. Incre-
mental collaborative filtering for highly-scalable recommendation algorithms.
In: Proceedings of International Symposium on Methodologies of Intelligent
Systems, pp. 553–561.

[31] C. Rana, S.K. Jain, A Study of Dynamic Features of Recommender Systems,
Artificial Intelligence Review, Springer, Netherlands, 2012, http://dx.doi.org/
10.1007/s10462-012-9359-6 (ISSN: 0269–2821).

[32] R. Salakhutdinov, A. Mnih, Probabilistic matrix factorization, in: J.C. Platt, et al.,
(Eds.), Learning, vol. 20, 2008, pp. 1–8.

[33] Sarwar, B., Karypis, G., Konstan, J., Riedl, J., 2001. Item-Based collaborative
filtering recommendation algorithms. In: Proceedings of the 10th Interna-
tional World Wide Web Conference, pp. 285–295.

[34] Sarwar, B., Karypis, G., Konstan, J., Riedl, J., 2002. Recommender Systems for
large-scale e-commerce: Scalable neighborhood formation using clustering.
In: Proceedings of the Fifth International Conference on Computer and
Information Technology, pp. 158–167.

[35] Shankar, R., Kiran, G.V.R, Pudi, V. 2010. Evolutionary clustering using frequent
itemsets, In: Proceedings of the First International Workshop on Novel Data
Stream Pattern Mining Techniques Stream in KDD 2010, ACM Press, pp. 25–30.

[36] Silva, N.B., Tsang, I.R. Cavalcanti, G.D.C., Tsang, I.J., 2010. A graph-based friend
recommendation system using genetic algorithm. In: Proceedings of the IEEE
World Congress on Computational Intelligence (WCCI), Barcelona, Spain,
pp.1–7.

[37] J. Senthilnath, S.N. Omkar, V. Mani, Clustering using firefly algorithm:
performance study, Swarm and Evolutionary Computation 1 (3) (2011)
164–171.

[38] A. Strehl, J. Ghosh, Cluster ensembles a knowledge reuse framework for
combining partitions, Journal of Machine Learning Research 3 (2002)
583–617. (Cambridge, MA, USA).

[39] Tang, L. Liu, H. Zhang, J., Nazeri. Z., 2008. Community evolution in dynamic
multimode net works”. In: Proceedings of KDD 2008, pp. 677–685.

[40] Ungar, L.H., Foster, D.P., 1998. Clustering methods for collaborative filtering. In:
Proceedings of the AAAI Workshop on Recommendation Systems, pp. 1–16.

[41] S. Vucetic, Z. Obradovic, Collaborative filtering using a regression-based
approach, Knowledge and Information Systems 7 (1) (2005) 1–22.

[42] Yu, K., Zhu, S. Lafferty, J., Gong. V., 2009. Fast nonparametric matrix factoriza-
tion for large-scale collaborative filtering. In: Proceedings of the 32nd
International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval, pp. 211.

[43] Zhao Y., Karypis, G., 2002. Evaluation of hierarchial clustering algorithms for
document datasets. In: Proceedings of International Conference on Informa-
tion and Knowledge Management, pp. 515–524.

C. Rana, S.K. Jain / Swarm and Evolutionary Computation 14 (2014) 21–3030

http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0085
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0085
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0085
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0090
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0090
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0095
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0095
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0095
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0095
http://refhub.elsevier.com/S2210-6502(13)00052-7/sbref12
http://refhub.elsevier.com/S2210-6502(13)00052-7/sbref12
dx.doi.org/10.1007/s10462-012-9359-6
dx.doi.org/10.1007/s10462-012-9359-6
dx.doi.org/10.1007/s10462-012-9359-6
dx.doi.org/10.1007/s10462-012-9359-6
http://refhub.elsevier.com/S2210-6502(13)00052-7/sbref13
http://refhub.elsevier.com/S2210-6502(13)00052-7/sbref13
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0100
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0100
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0100
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0105
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0105
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0105
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0105
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0110
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0110
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0110
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0115
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0115
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0115
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0115
http://refhub.elsevier.com/S2210-6502(13)00052-7/sbref14
http://refhub.elsevier.com/S2210-6502(13)00052-7/sbref14
http://refhub.elsevier.com/S2210-6502(13)00052-7/sbref14
http://refhub.elsevier.com/S2210-6502(13)00052-7/sbref15
http://refhub.elsevier.com/S2210-6502(13)00052-7/sbref15
http://refhub.elsevier.com/S2210-6502(13)00052-7/sbref15
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0120
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0120
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0125
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0125
http://refhub.elsevier.com/S2210-6502(13)00052-7/sbref16
http://refhub.elsevier.com/S2210-6502(13)00052-7/sbref16
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0130
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0130
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0130
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0130
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0135
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0135
http://refhub.elsevier.com/S2210-6502(13)00052-7/othref0135

	An evolutionary clustering algorithm based on temporal features �for dynamic recommender systems
	Introduction
	Motivation
	Contribution

	Related work
	Evolutionary clustering
	Problem formulation

	Evolutionary clustering based recommendation model
	Neighborhood computation
	Prediction
	Evolution of the clusters

	Experiments
	Dataset
	Methodology and metrics
	Benchmark CF system
	Experimental platform
	Experimental steps

	Results
	Prediction accuracy vs. choice of CF-algorithm
	Prediction time vs. choice of CF-algorithm
	Sensitivity of different training-test ratio x
	Sensitivity of no. of neighbor/no. of clusters

	Conclusion
	References

